What controls stratospheric water vapor?

A. E. Dessler

Dept. of Atmospheric Sciences
Texas A&M University

M.R. Schoeberl, T. Wang, S.M. Davis, K.H. Rosenlof, J.-P. Vernier

Sherwood and Dessler, 2000

Parcels initialized at 365-K potential temperature

1 day

Horizontal view

Vertical view

3 days

Horizontal view

Vertical view

1 week

Horizontal view

Vertical view

1 month

Horizontal view

Vertical view

3 months

Vertical view

Parcels have been thinned out by a factor of 10 Expanded the altitude scale

6 months

Parcels have been thinned out by a factor of 10

Parcels have been thinned out by a factor of 10

12/31/2005

Horizontal view

Parcels have been thinned out by a factor of 10

Some details

- Bowman trajectory model
- meteorology from MERRA and ERAinterim
- 6-hour instantaneous horizontal winds
- diabatic trajectory 6-hour average heating rates
- add parcels every day @ 365 K
- parcels removed after 10 years or if they descend into the troposphere
- Model has CH₄ oxidation

Some details

- Bowman trajectory model
- meteorology from MERRA and ERAinterim
- 6-hour instantaneous horizontal winds
- diabatic trajectory 6-hour average heating

Schoeberl, M. R., and A. E. Dessler, Dehydration of the stratosphere, Atmos. Chem. Phys., 11, doi: 10.5194/acp-11-8433-2011, 8433-8446

Schoeberl, M. R., A. E. Dessler, and T. Wang, 2012: Simulation of stratospheric water vapor and trends using three reanalyses, Atmos. Chem. Phys., 12, doi:10.5194/acp-12-6475-2012, 6475-6487.

1.0

slope =
$$0.23$$
 ppmv

slope =
$$0.22 \text{ ppmv}$$

slope = 0.23 ppmv

slope =
$$0.22 \text{ ppmv}$$

peak-to-peak amplitude of the QBO = ~ 0.45 ppmv

[consistent with Giorgetta and Bengtsson, 1999; Geller et al., 2002; Randel et al., 2004; Chiou et al., 2006]

What controls interannual variability of stratospheric water?

QBO	0.45 ppmv

What controls interannual variability of stratospheric water?

QBO	0.45 ppmv
ENSO	~ zero

smoothed MERRA H2O* with low-pass (5-year) filter

Qdot = 100-hPa heating rate averaged 25N-25S smoothed with 5-year FFT filter

Qdot = 100-hPa heating rate averaged 25N-25S smoothed with 5-year FFT filter

What controls interannual variability of stratospheric water?

QBO	0.45 ppmv
ENSO	~ zero
Mt. Pinatubo	0.2-0.4 ppmv

What controls interannual variability of stratospheric water?

QBO	0.45 ppmv
ENSO	~ zero
Mt. Pinatubo	0.2-0.4 ppmv
Brewer-Dobson circulation	0.4-0.5 ppmv

What controls interannual variability of stratospheric water?

$H2O*_{proxy} = -8.7*Q^{dot}_f + 0.23*QBO$

Scorecard

- Successfully analyzed the past few decades
- But what does this tell us about the future?
- Models predict an increase in water entering the stratosphere
- Why?

MERRA reanalysis

MERRA reanalysis

MERRA reanalysis

MERRA reanalysis

MERRA reanalysis

MERRA reanalysis

 ΔH_2O = (warming of the TTL)-(increased strength of BD circulation)

 ΔH_2O = (warming of the TTL)-(increased strength of BD circulation)

(warming of the TTL) > (increased strength of BD circulation) so $\Delta H_2O > 0$

Conclusions

- Over the past few decades the fundamental control of H2O entry value = QBO, BD circulation, volcanoes
- Each affects stratospheric entry value by ~0.4-0.5
 ppmv
- In the upcoming century, (ATM) warming of the TTL drives a long-term increase; stronger BD circulation offsets some of that increase
 - warming of the TTL dominates
- Contact me if you want the trajectories

Proxy = C*Qdot

C is from an EOF fit between Qdot and H2O*

Tropical Tape Recorder

Green line is the model Blue line is a proxy $H2O^* = -4.6*Q^{dot}_f + 0.22*QBO$

2005-10 minus 1985-90 MERRA $\Delta T = -0.4 \text{ K}$ -0.35 ppmv

ERAi $\Delta T = -0.15 \text{ K}$

Goddard Chemistry-Climate Model GEOSCCM Provided by Anne Douglass

Base state of the TTL is warming

- 1. warmer troposphere
- 2. changing GHGs

